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ABSTRACT
In this work we study local checkability of network proper-
ties like s-t reachability, or whether the network is acyclic or
contains a cycle. A structural property S of a graph G is lo-
cally checkable, if there is a prover-and-verifier pair (P,V) as
follows. The prover P assigns a label to each node in graphs
satisfying S. The verifier V is a constant time distributed
algorithm that returns Yes at all nodes if G satisfies S and
was labeled by P, and No for at least one node if G does
not satisfy S, regardless of the node labels. The quality of
(P,V) is measured in terms of the label size.

We obtain (asymptotically) tight bounds for the bit com-
plexity of the latter two problems for undirected as well as
directed networks, where in the directed case we consider
one-way and two-way communication, i.e., we distinguish
whether communication is possible only in the edge direction
or not. For the one-way case we obtain a new asymptotically
tight lower bound for the bit complexity of s-t reachability.
For the two-way case we devise an emulation technique that
allows us to transfer a previously known s-t reachability up-
per bound without asymptotic loss in the bit complexity.

CCS Concepts
�Networks → Network properties; �Computer sys-
tems organization → Dependable and fault-tolerant
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Models of computation; �Computing methodologies
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1. INTRODUCTION
Network administrators must know whether the network

is correct [24], e.g., whether destination t is reachable from
source s, or whether the forwarding rules present in the net-
work imply that packets may potentially be sent in a cycle.
Often such network properties are checked by constantly
sending probe packets into the network, or, alternatively,
by sending the state of all nodes in the network to a central
location where all the data is then verified. Both methods
take time, often too much time. It would be advantageous to
perform these costly global operations only if needed – and
otherwise rely on inexpensive local verification [22]. Our pa-
per studies local checkability of fundamental structural prop-
erties for directed as well as undirected networks: Nodes of
a network can check whether a given global structural prop-
erty of a network is guaranteed, just by locally comparing
their state with the state of their neighbors.

The concept of local checkability was popularized by Naor
and Stockmeyer [20]. In our context, this concept refers to
the nodes’ ability to decide (verify) whether the network has
the desired property by exchanging labels with their neigh-
bors. The notion of a decision in this distributed setting is
inspired by the class co-NP from sequential complexity the-
ory: The nodes decide Yes if all nodes agree, and No if at
least one node disagrees. In practice the disagreement could
subsequently be reported. With deterministic algorithms
only few properties can be checked locally. If however nodes
are allowed to use (a bounded amount of) nondeterminism,
a rich complexity hierarchy arises [17]. We focus on the
fastest possible case where nodes are only allowed to com-
municate a single round, cf. [19]. Furthermore, our model
has no strings attached, i.e., we do not assume any identi-
fiers or port numbers: All we allow is a single exchange of
labels between neighbors.

To obtain a better understanding of nondeterminism in
the context of distributed computing, let us quickly explain
a toy example. Consider the set Bipartite containing all
bipartite graphs. In the sequential setting, Bipartite would
be called a language, and the Yes-instances (words) in Bi-
partite are exactly the graphs that allow a bipartition of
the nodes. As in the sequential setting, one may now ask:
Is there a (nondeterministic) distributed algorithm decid-
ing whether a given graph G is in Bipartite, using only
a single communication round? Indeed, such an algorithm
exists [17]. First each node v nondeterministically chooses
either the value 0 or 1 and sends it to all neighbors. Next,
v checks if all its neighbors sent the value not chosen by v.

The proposed nondeterministic algorithm indeed decides
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Decision Problem Directed one-way Directed two-way Undirected
s-t reachability Θ(logn) O(log ∆) 1 [17] Section 3

Contains a Cycle not possible Θ(log n) 2 Section 2.1
Acyclic Θ(logn) Θ(logn) same as Tree Section 2.2

Tree Θ(logn) [19] Θ(log n) Θ(logn) [19] Appendix A

Table 1: The proof label size (in bits) necessary and sufficient for a PVP with respect to different graph
decision problems and communication primitives. Here n denotes the number of nodes in the network G,
and ∆ is the maximum degree of any node in G. For s-t reachability, the O(log ∆) one-way upper bound with
port numbers [17] translates to our two-way model, see Section 3. For Trees, the O(logn) upper bound for
directed one-way communication from [19] also applies in the two-way model.

Bipartite. A bipartition of the graph corresponds to a
nondeterministic choice of 0 and 1 for every node v so that
all neighbors of v choose the opposite value. Thus, when the
graph G is bipartite, the nodes nondeterministically decide
Yes. On the other hand, if G is not bipartite, then in all
possible nondeterministic choices of the nodes, at least two
nodes will have a neighbor that chose the same value. In
that case, the nodes decide No.

Every nondeterministic distributed algorithm can be ex-
pressed as a deterministic algorithm with access to a proof
labeling [17], where the proof labeling corresponds to an ora-
cle in the sequential setting. More precisely, a nondetermin-
istic algorithm is a pair (P,V), referred to as prover-verifier
pair (PVP). The task of the prover P is to assign labels to
nodes (the proof ) in a Yes-instance. The verifier V gets as
input at node v only the labels of v and its neighbors. Now
V has to decide Yes (at all nodes) in Yes-instances labeled
by P; In No-instances V has to decide No (for at least one
node) regardless of the node labels.

The complexity of such nondeterministic algorithms is
measured in terms of the maximum proof label size used
by P. This corresponds to the number of nondeterministic
choices made throughout the execution, and bears similar-
ity with the notion of oracle size in sequential complexity
theory. In our Bipartite example each node only needs a
single bit1 as its label.

There are two ways to view communication in directed
graphs: Nodes can communicate only in the direction of
the edge (directed one-way communication), or the edge di-
rection imposes no restrictions for communication but only
for the network property itself (directed two-way commu-
nication). We investigate both cases, as well as the undi-
rected case, where nodes communicate with all their neigh-
bors. One of our findings is that all three models are fun-
damentally different, not only in terms of proof label size,
but also in terms of decidability. The results for each of our
three network structure detection problems are summarized
in Table 1.

Another result of our work is the first non-trivial asymp-
totically tight lower bound for the directed s-t reachabil-
ity [2] problem that does not rely on descriptive complexity
methods. In that problem, two nodes s and t are guaranteed
by the problem setting, and the question is whether there is
a directed path from s to t. Note that both the directed and
the undirected variant are well understood in terms of de-
scriptive complexity, and the directed variant is known to be
more difficult [2, 8]. While the observations from [8] lead to

1Note that a standard covering argument (the 6-cycle is bi-
partite, while the 3-cycle is not) can be used to show that
one nondeterministic choice is also necessary.

a proof label size of 1-bit for the undirected variant, showing
a non-trivial lower bound for the directed case remained an
open question.

In light of our tight Θ(logn) bound for the s-t reachability
problem with directed one-way communication we revisit
the O(log ∆) bound from [17]. In particular, their upper
bound relies on the fact that the underlying communication
mechanism discloses port numbers to the verifier. As we will
detail in Section 3, this is unlikely to be necessary: When
directed two-way communication is available, the label can
be extended to include checkable port numbers using only
O(log ∆) additional bits. Since referring to a single port
number requires log ∆ bits anyway, this does not change the
asymptotic label size.

1.1 Related Work
More than 20 years ago, Naor and Stockmeyer [20] raised

the question of “What can be computed locally?” In their
work, the notion of Locally Checkable Labelings (LCL) is
investigated, where labels are checked in a local fashion, i.e.,
in a constant number of communication rounds.

This line of research is being followed in many directions,
with the concepts of Proof Labeling Schemes (PLS), Non-
deterministic Local Decisions (NLD), and Locally Checkable
Proofs (LCP) being most related to our work. We note that
all three approaches are strictly stronger than the model
discussed in this paper (by adding either identities, port
numbers, or more potent communication models).

The term Locally Checkable Proofs was coined by Göös
and Suomela [17] as an extension to Locally Checkable La-
belings, where LCP(f) allows for f(n) bits of additional in-
formation per node. They study decision problems from the
viewpoint of nondeterministic distributed local algorithms:
Is there a proof of size f(n) such that all nodes will out-
put Yes for Yes-instances, with any (invalid) proof for a
No-instance being rejected by at least one node? The au-
thors introduce a complexity hierarchy for various problems,
with LCP(0) being equivalent to LCL. For most of the re-
sults in [17], unique identifiers are assumed for each node,
or at least port numbers – which can be used for verifica-
tion purposes. Thus, their algorithms may use additional
strings of information free of cost, which might not be rele-
vant asymptotically for large proof sizes, but come into play
for small labels: E.g., in the case of directed s-t reachabil-
ity, they show that O(log ∆) bits suffice by “pointing” at the
successor node in the s-t path, a technique relying on port
numbers.

The Proof Labeling Schemes of Korman et al. [18, 19]
differ from LCPs in the sense that they only use one round of
communication to transfer the labels. Thus, upper bounds



from PLS apply to LCP and lower bounds from LCP apply
to PLS, as the LCP model is strictly more powerful than the
PLS model. In [19], the authors also investigate the role of
unique identities in PLS and show that there are cases where
(given) unique identities are necessary, but also examples
where the transition to identities is possible. Nonetheless,
they assume the nodes to be aware of the port numbers of
their edges.

Closely related to our work, they study (among other
problems) the question of whether a connected subgraph
is a tree and give asymptotically matching upper and lower
bounds of Θ(logn) bits for directed one-way communication
and the undirected case. Their proofs and techniques for
trees carry over to the model considered in this paper and
are thus referenced in Table 1. For spanning tree verification
(also without the notion of labels, cf. [21]), the construction
in [19] is also used in the context of Software Defined Net-
works (SDNs) [22]: Inconsistencies of a spanning tree for
routing can be detected locally, triggering a (costly) global
recomputation only if needed.

Nondeterministic Local Decisions [16] considers distributed
nondeterminism for decision problems. Like LCP and unlike
PLS, they allow more than one communication round. How-
ever, the proofs are not allowed to depend on the identifier of
a node (see [13, 14] for the impact of (missing) identifiers on
local decisions). Like in our case the nodes are anonymous
to the prover, but unlike in our case they are not anony-
mous to the verifier. In some sense, as described by [17], the
class NLD for connected graphs can be understood as LCL
( NLD ( LCP(∞). Unlike LCP and PLS above, Fraigniaud
et al. [16] also study the impact of randomization. Among
many other results, they reveal surprising connections be-
tween randomization and oracles related to nondeterministic
computing: As it turns out, an oracle providing the nodes
with the size of the graph gives“roughly [. . . ] the same power
to nondeterministic distributed computing as randomization
does” [16]. Additional recent results concerning the power of
randomization for local distributed computing can be found
in [12]. A generalization of identifiers, so-called scalar ora-
cles, were studied in [15].

Furthermore, there exists a strong connection between
proof labeling schemes and self-stabilization (we refer to
[10] for an overview of the topic): As characterized by Blin
et al. [9], “any mechanism insuring silent self-stabilization
is essentially equivalent to a proof-labeling scheme”. Even
more so, the proof size nearly corresponds to the number of
registers for self-stabilization [9]. As such, there has been
a long line of research connecting local checking with self-
stabilization [1, 5, 6, 7].

We ask the question of how a global prover can convince
a distributed verifier that it fulfills a certain property. One
may also ask the converse question, i.e., how a distributed
prover could convince a centralized verifier that knows only
node labels, but not the graph structure. This inverted set-
ting is studied in the works of Arfaoui et al. for trees [4] and
cycle-freeness [3].

1.2 Preliminaries

Graphs and Node Labels.
We model the network as a graph G = (V (G), E(G)),

where V (G) and E(G) denote the set of vertices and edges,
respectively, and when G is clear from the context, we write

V = V (G) and E = E(G). Similarly, we write n = n(G) =
|V (G)| for the number of nodes in G. The graph G may be
either directed or undirected, but we always assume G to
be (weakly2) connected. For a node v ∈ V , we denote by
degin(v) and degout(v) the number of incoming and outgo-
ing edges of v in G, respectively. We set deg(v) = degin(v) =
degout(v) if G is undirected, and deg(v) = degin(v)+degout(v)
if G is directed. By ∆(G) = maxu∈V deg(u) (or simply ∆)
we denote the maximum degree in G.

For two nodes u, v ∈ V , let dist(u, v) denote the distance
between both nodes in G (regarding the distance function
in the underlying undirected graph in the directed case). A
(node) labeling for G is a function ` : V → {0, 1}∗ that
assigns a finite label (i.e., a bit-string) to every node in V .

Communication Means.
Let G be a graph, let ` be a node labeling for G, and let v

be a node in G. We now consider three means of communi-
cation in G, namely U , D1, and D2, corresponding to undi-
rected, one-way, and two-way communication, respectively.
If G is undirected, then U(v) is the multiset [`(u1), . . . , `(uk)]
containing deg(v) labels, where u1, . . . , uk are the neigh-
bors of v. If G is directed, then we distinguish two cases.
For directed one-way communication, D1(v) is the multiset
[`(u1), . . . , `(uk)] containing degin(v) labels, where u1, . . . , uk

are the in-neighbors of v. For directed two-way communi-
cation, D2(v) is a pair (I,O), where I is D1(v) and O is
the multiset containing degout(v) many labels of v’s out-
neighbors. I.e., the sets U(v), D1(v), and D2(v) are the mes-
sages received by v when the corresponding communication
method is used. We denote the empty multiset by [ ].

Observe that all multisets above are unordered, i.e., there
are no unique identifiers and there is no notion of port la-
bels on the edges. If such an order is necessary (for some
verifier), then the means to order the multiset need to be
included in the proof labels, since the communication mech-
anism itself does not attach any strings to the messages. In
the directed two-way case, however, there is a clear distinc-
tion between messages transferred along the edge direction
or opposite to it. Note that this distinction is necessary: If
it was not made, the directed two-way mode would essen-
tially be equivalent to the undirected case, since the edge
direction becomes indistinguishable.

Local Checkability.
An (un)directed network property is specified by a set Y of

(un)directed graphs containing the Yes-instances, and any
(un)directed graph G 6∈ Y is referred to as a No-instance.
A prover-verifier pair (P,V) for Y (PVP for short) works
as follows.

The prover P gets as an input a graph G ∈ Y and com-
putes a (finite) node label `(v) for every v ∈ V . This label-
ing ` obtained from P is referred to as proof. Let G be any
graph, and let ` be any node labeling for G. The verifier V
is a distributed algorithm that gets as an input at node v
the label l(v); and in addition either U(v) if Y is an undi-
rected property, or D1(v) respectively D2(v) depending on
the communication means if Y is a directed property.

A PVP (P,V) is correct for Y if it satisfies
(1) if G ∈ Y and ` was obtained from P, then V returns

2A directed graph is called weakly connected if the under-
lying undirected graph is connected.
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Figure 1: Yes-instance G and No-instance H of D-Cycle. A and B are the labels assigned to the nodes a and
b in G by the prover P, the node labels in the cycle are not shown. The construction of H yields that for each
u in H there is a v in G with (`′(u), D1(u)) = (`(v), D1(v)).

Yes at all nodes; and
(2) if G 6∈ Y , then V returns No for at least one node,

regardless of the node labels.
Whenever necessary, we specify the PVP by the communica-
tion means used for the verifier, and write U-PVP, D1-PVP,
and D2-PVP correspondingly. When X ∈ {U,D1, D2} is
some means of communication, then a network property Y
is X-locally checkable if there is a correct X-PVP for Y .

The quality of a PVP is measured in terms of the maxi-
mum label size in bits assigned by the prover. For a PVP
(P,V), the proof size of (P,V) is f(n) if the labels assigned
by P use at most f(n) bits in any Yes-instance containing
at most n nodes. For a network property Y , the X-proof
size for Y is the smallest proof size for which there exists a
correct X-PVP for Y . Since the communication means are
clear for undirected properties, we omit them in that case.
Throughout this paper, all logarithms use base 2 and are
rounded up to be of integer value.

2. CHECKING NETWORK PROPERTIES

2.1 Cycles
Let U-Cycle denote the set of all undirected connected

graphs containing at least one cycle. Let correspondingly
D-Cycle denote the set of all weakly connected directed
graphs containing at least one directed cycle. Note that
an undirected graph is in U-Cycle exactly if it is not an
undirected tree, while a directed graph G is in D-Cycle
exactly if G is not a directed acyclic graph (DAG). In the
remainder of this section we establish the following:

Theorem 1. For the cycle detection problem, it holds that
(i) There is no D1-PVP for D-Cycle.

(ii) The D2-proof size for D-Cycle is Θ(logn) bits.
(iii) The U-proof size for U-Cycle is 2 bits.

We prove each claim listed in Theorem 1 separately, start-
ing with the directed cases. As the first step we show that
there cannot be a D1-PVP for D-Cycle.

Lemma 2. There is no D1-PVP for D-Cycle.

Proof. Assume, for the sake of contradiction, that there
exists a correct D1-PVP (P,V) for D-Cycle. Our goal is to
construct a No-instance H and node labels `′ for the nodes
in H so that V returns Yes at all nodes. To that end, con-
sider the Yes-instance G (depicted in Figure 1) consisting of
a cycle with two nodes c1, c2, and two additional nodes a, b,
where a has the two outgoing edges (a, c1) and (a, b). Let `
denote the node labeling assigned to G by P, and denote by
A and B the values `(a) and `(b), respectively.

Our No-instance H, as shown in Figure 1, consists of the
three nodes a, b, and b′, and the two edges (a, b) and (a, b′).
Note that indeed, H does not contain a cycle. By assigning
the labels `′(a) = A and `′(b) = `′(b′) = B, we obtain that

for all nodes u in H there is a corresponding node v in G
for which (`′(u), D1(u)) = (`(v), D1(v)). The verifier V can
therefore not differentiate between u and v and thus returns
Yes for all nodes in H. This contradicts the assumption
that (P,V) is correct for D-Cycle.

Lemma 3. There is a D2-PVP for D-Cycle with a proof
size of logn bits.

Proof. We describe a D2-prover-verifier pair (P,V) for
D-Cycle as required. Let G = (V,E) ∈ D-Cycle and
let C ⊆ V be the set of all nodes that are in a directed
cycle. The prover P labels all nodes v ∈ V as follows. First,
all nodes vc ∈ C are labeled with `(vc) = 0. All other
nodes v ∈ V are labeled regarding their distance to the
closest cycle: The prover P sets `(v) = distC(v), where
distC(v) = minvc∈C dist(vc, v). We refer to Figure 2 for an
example. As the distance is bounded from above by n, the
maximum label size is logn bits.

The verifier V returns Yes for nodes vc with `(vc) = 0 if
for the received pair (I,O) of labels holds: There is a label
of 0 in I and a label of 0 in O. For the other nodes v ∈ V ,
Yes is returned by V if a) there is an edge (u, v) or (v, u)
such that `(v) = `(u) + 1 and b) no edge (u′, v) or (v, u′)
such that `(v) > `(u′) + 1. In all other cases, V returns No.

We now show that V returns Yes for all nodes v in Yes-
instances that were labeled by the prover P: The prover P
labeled only (and all the) nodes on a directed cycle with a
0, i.e., if `(v) = 0, then V returns Yes for v. The remaining
case is `(v) = j > 0. If `(v) = j, then distC(v) = j, i.e.,
there exists a node u ∈ V such that distC(v) = distC(u) + 1
and no node u′ ∈ V such that distC(v) > distC(u′) + 1, as
by the definition of P. Thus, V returns Yes as well.

For the D2-PVP (P,V) to be correct, it is left to show that
V returns No for at least one node if the considered graph
is not in D-Cycle. Analogously to the undirected case, let
Gno be a weakly connected directed graph containing no
directed cycle.

For contradiction, assume there would be a node v ∈
V (Gno) with `(v) = 0. Then there has to be a node v1
with `(v)1 = 0 such that there exists an edge (v, v1), else V
would return No. This concept of “following the zero” can
be iterated, but as the graph is finite (and does not con-
tain a directed cycle), there will be a node vj for which no
node vj+1 with `(vj+1) = 0 exists such that there is an edge
(vj , vj+1). Hence, V would return No and therefore no node
can be labeled with 0 in Gno.

An idea similar to following the zero can now be applied
again: W.l.o.g., let v be a node with the label k. There
has to be an edge (v, v1) with `(v1) = k − 1, else V would
return No for v. Again, as the graph is finite and contains
no cycle, following the outgoing edge to a decreasing label is
no longer possible at some point. Thus V will return No for
any weakly connected directed graph not containing a cycle,
meaning that the D2-PVP (P,V) is correct.
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Figure 2: A Yes-instance of D-Cycle labeled for two-way communication. All nodes on cycles have the label
0, and all other nodes are labeled with the minimum distance to the nearest cycle using the distance function
in the underlying undirected graph.

G: . . . A B . . . A B . . .

v1 vi−1 vi vi+1 vi+2 vj−1 vj vj+1 vj+2 vn−2 vn−1 vn

H:
A B . . . A B . . .

ui ui+1 ui+2 uj−1 uj uj+1 u′i+2 u′j−1

Figure 3: Yes-instance G (with odd n) and No-instance H of D-Cycle. G consists of the n nodes v1, . . . , vn. For
even k, node vk has two incoming edges from vk−1 and vk+1, whereas all vk with odd k have two outgoing edges
to vk−1 and vk+1, i.e., the edge directions alternate. The prover P assigned the labels `(vi) = `(vj) = A and
`(vi+1) = `(vj+1) = B to the corresponding nodes in G. In H, the nodes ui+2, . . . , uj−1 are copies of vi, . . . , vj+1

from G, and the nodes u′i+2, . . . , u
′
j−1 are obtained by copying (again) the nodes vi+2, . . . , vj−1. Note that H

does not contain a cycle, but due to our construction each u ∈ V (H) has a corresponding node v ∈ V (G) with
(`(u), D2(u)) = (`(v), D2(v)).

Lemma 4. The D2-PVP proof size for D-Cycle is at
least log

(
n−5
2

)
/2 bits.

We establish Lemma 4 by showing that any D2-PVP (P,V)
with a smaller proof size can be fooled. To that end, we ap-
ply P to a Yes-instance G. We then use the labels applied
by P to construct a No-instance H for which V must return
Yes.

Our construction relies on a graph G, obtained from an
undirected path by alternating the edge directions, and cre-
ating a cycle with the last two nodes (see Figure 3 for an
illustration). If the proof size is at most log

(
n−5
2

)
/2 − 1

bits, then less than
√
n− 5/2

√
2 different labels are avail-

able. Thus, in G a pair of adjacent labels A, B on the path
will appear twice. Moreover, the nodes labeled A have only
outgoing edges, and conversely, the nodes labeled B have
only incoming edges. We obtain the acyclic No-instance H
by copying the to pairs of nodes, and connecting them as
depicted in Figure 3. This construction ensures that for all
nodes u in H, there is a corresponding node v in G with
(`(u), D2(u)) = (`(v), D2(v)). Therefore, the verifier V re-
turns Yes for all nodes in H.

Proof. Assume, for the sake of contradiction, there ex-
ists a D2-PVP (P,V) for D-Cycle using log

(
n−5
2

)
/2 − 1

bits. Let G be the path v1, ..., vn−2 with n − 2 nodes and
alternating edge directions, connected at vn−2 to the cycle
vn, vn−1 (which consists of just two nodes). The graph G is
a Yes-instance of the problem, and thus the verifier V has
to return Yes for every node if the graph G was labeled by
the prover P.

We will now construct a No-instance H (based on G and
P) such that for each vH ∈ V (H) there is a vG ∈ V (G)

with (`(vH), D2(vH)) = (`(vG), D2(vG)), i.e., the verifier will
output Yes for every node in H.

First, we will prove that (due to the construction of G)
there are i 6= j, with 2 ≤ i, j ≤ n − 3, such that a) `(vi) =
`(vj), b) `(vi+1) = `(vj+1), and c) dist(vi, vj) = 2k, k ∈
N: There are at least bn−5

2
c pairs (i, i + 1) with 2 ≤ i ≤

n − 3 for each direction of the edge vi, vi+1. Labeling each
pair differently requires at least

√
(n− 5)/2 different labels,

i.e., at least
1

2
log(n−5

2
) bits. Hence (using the pigeonhole

principle), the claim holds.
The No-instance H can now be constructed as follows:

Let P be the (possibly empty) sub-path vi+2, ..., vj−1 in G.
We construct the cycle like structure H using two copies of P
to connect copies of the pairs vi, vi+1 and vj , vj+1, see Figure
3. We obtain the graph H with the nodes ui, ..., uj+1, u

′
i+2,

..., u′j−1, where the underlying undirected graph forms a
ring.

It is left to show that we can assign labels to nodes in H
such that V returns Yes for all nodes in H. We assign the
labels to the nodes in H by setting `(ux) = `(vx) for all x
and `(u′x) = `(vx) for all x. It holds for each node vH ∈ H
that there is a node vG in G such that D2(vH) = D2(vG)
and `(vh) = `(vG). Thus, as V returns Yes for all nodes in
G, V must return Yes for all nodes in H, which contradicts
that (P,V) is correct.

The claims (i) and (ii) of Theorem 1 for directed graphs
are now established by Lemmas 2 to 4 . The next two lem-
mas cover the undirected case (iii).

Lemma 5. There is a U-PVP for U-Cycle with a proof
size of 2 bits.
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Figure 4: A labeled Yes-instance of U-Cycle. Nodes in cycles are labeled 3. The remaining nodes form a
forest. After picking a root node adjacent to a cycle for each tree in the forest, all nodes in a tree are labeled
with their distance (modulo 3) to the corresponding root.

The upper bound for the optimal proof size is established
by providing a U -PVP (P,V) with the desired proof label
size. The idea is similar to the directed case, but this time
the prover P labels all cycles with a 3 instead of a 0. Since
removing all cycles from G leaves a forest of undirected trees
(instead of the collection of DAGs in the directed case), one
can save quite a few bits in the labels for the remaining
nodes. For each tree, P picks a root node r that was origi-
nally adjacent to a cycle. In each tree, all nodes are labeled
with their distance to r modulo 3. An example of a graph
G labeled by P is depicted in Figure 4.

The correctness of the PVP is established in a similar
manner as in the directed case: The verifier V can then
check if each node supposedly on a cycle (label 3) has at
least two neighbors in a cycle, and if every other node (label
6= 3) has exactly one node “closer” to the root node of its
tree. If G is acyclic, then there can be no node with label
3, as all nodes with a label of 3 would form a forest with at
least one leaf. Assume for the sake of contradiction that the
verifier returns Yes for all nodes, and consider any node in
some acyclic graph G. The path obtained by following the
labels in descending order (modulo 3), i.e., going towards
the root, must have infinite length, since there is no node
adjacent to a cycle to break the succession.

Proof. We describe a U -prover-verifier pair (P,V) as re-
quired. Let G = (V,E) ∈ U-Cycle. The prover P labels all
nodes v ∈ V as follows: If v is part of a cycle, then `(v) = 3.
By removing all nodes (and incident edges) that belong to
a cycle, the graph decomposes into a set of Trees T . Each
tree T ∈ T is labeled by first picking a node r ∈ T that was
originally adjacent to a cycle and setting `(r) = 0. Then,
for each other node t ∈ T let distT (r, t) be the distance from
r to t in T and set `(t) = distT (r, t) mod 3. An example
for the labeling can be found in Figure 4. As only the labels
{0, 1, 2, 3} are used, 2 bits suffice.

The verifier V returns Yes for nodes v with a) at least
two neighbors have a label of 3 if `(v) = 3 or b) if `(v) = j,
j ∈ {0, 1, 2}, then the following three conditions must be
fulfilled: i) There is no neighbor with a label of j, ii) There
is exactly one neighbor with a label of j − 1 if j ∈ {1, 2} or
at most one neighbor with a label of 2 if j = 0 , and iii) all
other neighbors must have a label of exactly j + 1 mod 3
or 3. In all other cases, V returns No. If a node v is part
of an undirected cycle (hence, `(v) = 3), then it has at least
two neighbors in the cycle with the label 3, meaning that V
returns Yes for v. Else, consider the tree T ∈ T from above
with v ∈ T with the corresponding “root” node r picked by
the prover. If v = r, then all neighbors in T have the label 1
and all other neighbors (of whom at least one exists) are on

cycles with a label of 3. Thus, V outputs Yes for v = r. If
v ∈ T and v 6= r, then all neighbors v′ of v in T are labeled
according to `(v′) = distT (r, v′) mod 3. All other neighbors
(if any exist) of v in G must be on cycles with a label of 3.
Hence, V returns also Yes in this case.

For the U -prover-verifier pair (P,V) to be correct, it is
left to show that V returns No for at least one node if the
considered graph is not in U-Cycle. Let Gno be a connected
undirected graph containing no cycle.

Assume there would be a node v ∈ V (Gno) with `(v) = 3.
Consider all nodes with a label of 3 in V (Gno): As there
is no cycle, the subgraph(s) induced by these nodes form a
forest F . Let T ∈ F be the tree with v ∈ T . Pick a leaf of
T : It has at most one neighbor with a label of 3, meaning
that V will return No for at least one node.

Thus, no node v with `(v) = 3 can exist. Now, pick any
node v ∈ V (Gno with `v ∈ {0, 1, 2}. v (and also any other
node in V (Gno) must have exactly one neighbor v1 with a
label of `(v1) = `(v) − 1 mod 3, as else V would return
No for v. Consider the path starting from v that picks as
its next node the unique neighbor with a label smaller by
one modulo 3, i.e., v, v1, . . . - until no such node exists any
more. Since Gno is cycle-free, the path must be finite and
end at some node vj . As vj has no neighbor with a label
of 3 or a label of `(vj) − 1 mod 3, the verifier V returns
No for vj . Thus V will return No for any connected graph
not containing a cycle, meaning that the U -PVP (P,V) is
correct.

Lemma 6. The U-PVP proof size for U-Cycle is at least
2 bits.

Proof. The proof is by case distinction. Assume there
exists a U -PVP (P,V) for U-Cycle using 1 bit. We use
a Yes-instance G = (V (G), E(G)) of U-Cycle consisting
of a cycle with three nodes with a path P of three nodes
attached to it. We will show that for any labeling ` assigned
to the nodes on the path P , for which V returns Yes for all
nodes in G, there exists a No-instance H = (V (H), E(H))
of U-Cycle for which V must also return Yes for all nodes
in H. W.l.o.g. consider the four cases in Figure 5.

These four cases combined with their analogous inver-
sions, where all labels are switched on the path P , present
all combinations of how labels can be assigned to the nodes
on the path P . For every Yes-instance G there exists a
No-instance H such that for each vH ∈ V (H) there is a
vG ∈ V (G) with (`(vH), U(vH)) = (`(vG), U(vG)). Since V
can not differentiate between vH and VG, it must also return
Yes for all nodes in the corresponding No-instance, which
contradicts that (P,V) is correct. It follows that there is no



G1: 0 0 0 H1: 0 0

G2: 0 1 0 H2: 0 1 0

G3: 1 1 0 H3: 0 1 1 0

G4: 1 0 0 H4: 0 0

Figure 5: Yes-instances G1, G2, G3, G4 and No-instances H1, H2, H3, H4 of U-Cycle. For any labeling assigned
to the Yes-instances, there exists a No-instance for which V must return Yes for all nodes. In these graphs,
the labels for the nodes in the cycle can be chosen arbitrarily. The numbers in the remaining nodes are their
labels. All labels in this figure can be inverted to get the remaining 4 possible combinations for a labeling.
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Figure 6: A labeled Yes-instance of D-Acyclic. Nodes without incoming edges are labeled 0, all other nodes
have a label that is equal to the highest incoming label plus 1.

correct proof labeling scheme (P,V) using only 1 bit.

2.2 Acyclicity
In the undirected case, an acyclic graph is nothing but an

undirected tree. The question of detecting undirected trees
was already answered in [19] (see Section A). In the directed
case, however, not every acyclic graph is necessarily a tree.
Let D-Acyclic denote the set of all weakly connected di-
rected acyclic graphs. In the remainder of this section we
establish the following:

Theorem 7. For the acyclicity detection problem, it holds
that

(i) The D1-proof size for D-Acyclic is Θ(logn) bits.
(ii) The D2-proof size for D-Acyclic is Θ(logn) bits.

While not every directed acyclic graph is a directed tree,
the converse holds, i.e., every directed tree is a directed
acyclic graph. Techniques similar to those used by Korman
et al. [19] can be used to obtain the claimed lower bound
for tree detection in our model. Hence, we only need to
establish the upper bounds in Theorem 7. Note that any
D1-PVP immediately yields a D2-PVP with the same proof
size by simply ignoring the information obtained via outgo-
ing edges. It is therefore sufficient to find a D1-PVP with
the desired proof size.

Lemma 8. There is a D1-PVP for D-Acyclic with a
proof size of logn bits.

In the proof, the prover assigns each node with no in-
coming labels the label 0, and each other node the highest
incoming label plus one. We refer to Figure 6 for illustra-
tion. Thus, each node with label j > 0 can check if there
is an incoming label j − 1, or when j = 0, if the multiset
of incoming labels is the empty set. As each No-instance

contains a cycle, a node with the highest label in the cycle
would send its label to another node, causing this node to
output No.

Proof. We describe a D1-prover-verifier pair (P,V) as
required. Let G = (V,E) ∈ D-Acyclic and let V0 ⊆ V
be the set of all nodes v0 ∈ V with D1(v) = [ ], i.e., v0
has zero incoming edges. The prover P labels all nodes
v ∈ V as follows. a) All nodes v0 ∈ V0 have the label
`(v0) = 0, and b) for all other nodes v+ ∈ V holds: `(v+) =
1 + max(u,v+)∈E `(u). We refer to Figure 6 for an example.
As a label i requires a label i− 1 to exist, the highest label
is bounded from above by n, inducing a maximum label size
of logn bits.

The verifier V returns Yes for nodes v with a) D1(v) = [ ]
if `(v) = 0 or b) `(v) = 1 + max(u,v)∈E `(u) if D1(v) 6= [ ].
In all other cases, V returns No. Thus, the verifier returns
Yes for all nodes in V if G was labeled by P, as all incoming
labels are available to the verifier.

For the D1-prover-verifier pair (P,V) to be correct, it is
left to show that V returns No for at least one node if the
considered graph is not in D-Acyclic. Let Gc be a weakly
connected directed graph containing a directed cycle C =
v1, v2, . . . , v|C|, v1. W.l.o.g., let vi ∈ C be a node with the
highest labeling in C. Consider the outgoing edge from vi
in C: The corresponding neighbor of vi in C cannot have a
higher label than vi. Thus V will return No, meaning that
the D1-PVP (P,V) is correct.

3. PORT NUMBERS VS.
S-T REACHABILITY

As pointed out by Göös and Suomela in [17], “To ask
meaningful questions about connectivity [...] we have the
promise that there is exactly one node with label s and exactly
one node with label t.” In this section, we thus assume that
all graphs have at least two nodes, of which one node has



200

1s

4

3

t

0 00

0

Figure 7: A labeled Yes-instance of s-t reachability. All nodes v in G on the shortest s-t path P of length 5
are labeled `(v) = dist(s, v). All other nodes are labeled 0.

the unique label s and another node has the unique label t.
It is known that in the undirected case, the U -proof size for
s-t reachability is 1 bit, see Section 1. In the directed case,
on which we focus, a non-trivial lower bound remained an
open question [17]. For that, let s-t reachability denote
the set of all directed graphs containing a directed path from
s to t.

We show a lower bound for s-t reachability with one-
way communication by combining our previously used tech-
niques. The upper bound for the two-way case requires a
new insight: As it turns out, port numbers can be emulated
in our model by implementing a 2-hop coloring with only
O(log ∆) bits3. Then, whenever a port number is required
for some proof, we only need to pay at most O(log ∆) bits.
While this seems like a high price to pay, we note that refer-
ring to a specific port number requires O(log ∆) bits even if
the port numbering itself is provided for free. We will later
see how this applies in the case of two-way s-t reachabil-
ity (cf. [17]). In the remainder of this section we establish
the following theorem:

Theorem 9. For the s-t reachability problem, it holds
that

(i) The D1-proof size for s-t reachability is Θ(logn)
bits.

(ii) The D2-proof size for s-t reachability is at most
O(log ∆) bits.

To see that s-t reachability permits a D1-PVP with a
proof size of O(logn), observe that the nodes on the path
can simply be enumerated, cf. Figure 7. Each node on the
path can now check whether it has a predecessor on the
path, i.e., every Yes-instance is verified correctly. To see
that No-instances will be rejected, one can follow a similar
line of arguments as in Lemma 8: Every path obtained by
following descending incoming labels, starting from t, must
end in a node without a predecessor, since the graph is finite
and s and t are not connected.

Lemma 10. There is D1-PVP for s-t reachability with
a proof size of O(logn) bits.

Proof. We describe a D1-prover-verifier pair (P,V) as
required. Let the directed graph G = (V,E) ∈ s-t reach-
ability and let P = s, v1, . . . , vj , t be a shortest directed
path from s to t. The prover P labels all nodes v /∈ P
with `(v) = 0 and each node vi ∈ P = s, v1, . . . , vj , t with
`(vi) = i, i.e., `(vi) = dist(s, vi) by definition of P . We refer
to Figure 7 for illustration. As dist(s, t) ≤ n, `(s) = s, and
`(t) = t, the proof size is in O(logn) bits.

3For more applications of 2-hop colorings in anonymous net-
works we refer to the article of Emek et al. [11], and [23].

The verifier V returns Yes for all nodes v with a label of
0 and for the node s with unique label `(s) = s. For the
node t with the unique label `(t) = t, Yes is returned if
a) the label s is received, or b) if a label greater than zero
is received. V returns Yes for all other nodes v with label
`(v) = i > 1, if one of the received labels is i − 1. For the
special case of `(v) = 1, one of the received labels has to be
s.

Thus, the verifier will return Yes at all nodes for Yes-
instances labeled by P: The nodes v with `(v) = 0 and s
return Yes. Furthermore, as each other node is on the path
P = s, v1, . . . , vj , t with `(vi) = i, they have a predecessor
on the path with the desired label, and hence return Yes as
well.

It is left to show that V returns No for at least one node
if the graph G is not in s-t reachability. Let H be a
No-instance of s-t reachability, i.e., there is no directed
path from s to t. Consider the set Z of nodes that can be
reached from t by traversing directed edges in the reverse
direction to a node with a label lower by exactly one, or in
the case of t, with any label greater than zero. Note that
by definition of H, there is no node v′ ∈ Z such that there
is an edge (s, v′) ∈ H(E). Let v∗ be a node with the lowest
label `(v∗) = x in Z: As v∗ cannot receive a label x − 1 or
the label s, v∗ will return No. Hence, the desribed D1-PVP
(P,V) is correct.

Lemma 11. The D1-PVP proof size for s-t reachabil-
ity is at least log

(
n
4

)
− 2 bits.

Proof. Assume, for the sake of contradiction, that there
is a D1-PVP (P,V) for s-t reachability with a proof size
of log(n/4)− 3 bits. Let n be odd and let G be the directed
path P = v1, . . . , vn where v1 = s, and vn = t. We add to G
directed edges so that all nodes vk with n > k > dn/2e have
an outgoing edge to vk−dn/2e+1, as depicted in Figure 8. We
note that G is a Yes-instance for s-t reachability, and
that there is only one simple path from s to t in G. Like
above, we now apply P to G and use the obtained labels
` to construct a No-instance H with a labeling `′. The
construction ensures that for every node u in H, there is a
node v in G with (`′(u), D1(u)) = (`(v), D1(v)).

With an argument analogous to that in the proof of the
previous Lemma 4, we will first show that there are i 6= j,
with dn/2e + 2 ≤ i ≤ n − 4 and i + 2 ≤ j ≤ n − 2, such
that `(vi) = `(vj). In other words, we are looking for two
non-adjacent nodes vi and vj that are within the second half
of the path P , and vi comes before vj on P . Suppose that
there are no such vi, vj . Consequently, `(vdn/2e+2) must be
different from the label of each node in {vdn/2e+4, ..., vn−2}.
By induction, if vi, vj with the desired properties do not
exist, then there need to be at least bn

4
c−2 different labels on
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Figure 8: The Yes-instance G of s-t reachability used in our proof of Lemma 11. Nodes vj with j > dn/2e have
an outgoing edge to vj−dn/2e+1. Note that G contains only one simple s-t path.
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Figure 9: Yes-instance G of s-t reachability labeled by P, and the corresponding No-instance H for s-t
reachability. Some label A appears twice on the s-t path, namely at the nodes vi and vj. Since vj is at least
two steps after vi and has an outgoing edge to a node x before vi, the No-instance H for which V fails can be
constructed. For the sake of simplicity not all edges are shown.

the sub-path vdn/2e+2, . . . , vn−2. This is a contradiction to
the assumption that the proof size is limited to log(n/4)− 3
bits, and we conclude that such nodes vi, vj must be present.

To complete our proof of Lemma 11, we now construct
the No-instance H and the labeling `′. For that, let vi and
vj be the two nodes in G with `(vi) = `(vj) as above. We
denote by x the node vj−dn/2e+1 in the first half of P with an
incoming edge from vj . To construct H and `′, we first copy
the graph G including the labels assigned by `. We then re-
place the edges (vi, vi+1) and (vj , x) by (vi, x) and (vj , vi+1)
(see Figure 9). Note that in H, the two distinguished nodes
s and t are no longer connected by a directed path.

It is left to show that V will return Yes for all nodes in H
when labeled with `′. Note that in H, the only nodes that
were changed in some way in comparison to G were vi, vi+1,
vj and x. However, all four nodes still have the same labels,
and the incoming edges were changed only for x and vi+1.
As it holds that `′(vi) = `′(vj), it follows that D1(vi+1) is
the same in G and in H, equivalently for D1(x). Thus, since
the verifier V returned Yes for all nodes in G, V must also
return Yes for all nodes in H, contradicting that (P,V) is
correct.

We note that the construction in the proof of Lemma 11
has constant degree in every node. Therefore, there cannot
be a D1-PVP for which the proof size depends only on ∆.
The missing part to establish Theorem 9 is a D2-PVP for
s-t reachability.

The PVP for this problem as proposed by [17] relies on
the nodes’ ability to “point to an edge” by using its port
number. The authors suggest to mark an s-t path P by
simply pointing to the edges used by P . We argue that one
can point to an edge in our models U and D2, even though
port numbers are not available. To that end, we enrich the
labels to include a 2-hop coloring of the graph G, i.e., a
coloring (node labeling) such that the label of each node

v is unique among all nodes with distance at most 2. We
denote this coloring by c(v).

Since a 2-hop coloring requires at most ∆2 + 1 colors,
each color can be encoded using O(log ∆) bits. Moreover,
the 2-hop coloring can be checked locally, since each node v
only needs to verify if v and all its neighbors have different
colors. A PVP can now rely on the fact that v’s color is
unique among u’s neighbors.

To obtain a D2-PVP for for s-t reachability, a node
u ∈ V can now point to an edge (u, v) ∈ E by referencing
c(v) in its label. In this way, the pointed-to edge is uniquely
specified for both u and v. Applying the same reasoning
as in [17], we obtain the following lemma, which together
with Lemmas 10 and 11 concludes our effort to establish
Theorem 9.

Lemma 12. There is a D2-PVP for s-t reachability
with a proof size of O(log ∆) bits.
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APPENDIX
A. TREES

Let U-Tree denote the set of all undirected trees. Let
correspondingly D-Tree denote the set of all weakly con-
nected directed trees in which all edges are directed away
from some unique root node.

Theorem 13 ([19]). For the tree detection problem, it
holds that

(i) The proof size for U-Tree is Θ(logn) bits.
(ii) The D1-proof size for D-Tree is Θ(logn) bits.

(iii) The D2-proof size for D-Tree is Θ(logn) bits.

While the authors of [19] assumed port numbers to be
available, the PLS used in the upper bound construction do
not make use of them. Therefore, the upper bound claims (i)
and (ii) carry over to our model. Since their port numbering
model is strictly stronger than ours, the same is true for
the lower bounds. Naturally, upper bounds for D1-proof
sizes carry over to the D2-case, so the only thing that is left
is to show that there exists no D2-PVP with a proof size
of o(logn) bits. Since the counter example construction to
establish this claim are very similar to the construction used
in [19], we omit the details here.
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